1.0 INTRODUCTION

1.1 Background Information

Fire is often described as the greatest servant but the worst master- difficult to control when it turns into inferno- as it wrath on, burning and scorching everything on its path. Fire, as we all know, has no respect for man; rich and poor alike. Fire outbreak in the country has indeed assumed an alarming proportion. In Nigeria today, there is barely a day without one accident or the other and most has to do with fire outbreak.

The following fire outbreaks were so far reported in the nations daily in the year 2016; Yola market fire inferno (Iro, 2016), behind Mandilas, Marina, Lagos, fire inferno (Sotubo, 2016), Kano Singa market fire (Nkem, 2016), Vice-chancellor lodge's fire, Unilag (Wale, 2016) and Kano's Sabon-gari fire inferno (NAN, 2016).

Although most of these fire outbreaks can be attributed to many factors which includes but not limited to the following; storing of adulterated fuel, Power surge, electric sparks, illegal connection of electricity, lighted match, stoves, cookers and gas cylinders, it's a fact that whether from electrical faults in homes and offices, to firecrackers in marketplace or petrol tanker explosion on busy streets. This reported fire infernos has resulted in destruction of properties worth billions naira, several deaths, burning to ashes of cars worth millions of naira and consumption of numerous buildings, including worship centres.

1.2 Problem Statement

The rate at which fire outbreaks occur is becoming worrisome calling to question the effectiveness of the Federal Fire Service (FFS) tasked with the mandate of urgently addressing the trend by way of implementing fire code among other expectations. In most cases, it has always been tales of inefficiency on the part of the fire service that always arrives late to the venue of the incidence and complains of lack of equipment to do their job

1.3 Objectives of the Research

To design a wireless fire reporting system that will supply the following information to the firefighting centre;

- Address of venue of incidence
- Time of occurrence
- Distance of firefighting office to the vicinity of the inferno

The system will also furnish the occupants of the building that are away with the information on the inferno.

1.4 Scope of Research

The design is a prototype, global design will require the integration of google map.

1.5 Literature review

A fire alarm system is intended to enable a fire to be detected at a sufficiently early stage so that people who are at risk can be made safe either by escaping from the fire or by the fire being extinguished (also to prevent extensive property damage). Neither of these measures can be used until people are made to be aware of the fire (Safety, 1926), (Goh & Kwek, 2005). A fire alarm is to provide the followings;

- a. detect a fire at an early stage
- b. alert and evacuate occupants
- c. notify the relevant personnel
- d. activate auxiliary functions e.g. smoke controls, lift homing etc
- e. identify and guide fire fighters

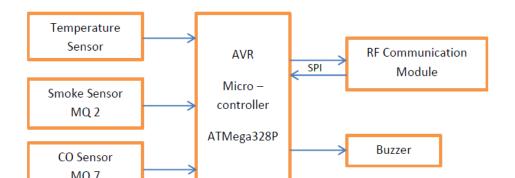
A basic Fire detection and response system is as shown in Fig. 1 (Goh & Kwek, 2005).

2.0 METHODOLOGY

2.1 Materials/Equipment

- 1. ATmega328P microcontroller
- 2. 433Mhz RF Transmitter & Receiver Communication Module
- 3. MQ2 Smoke Sensor
- 4. MQ7 CO Carbon monoxide Sensor

- 5. DS1820 Temperature Sensor
- 6. 900Mhz 1800Mhz GSM Modem
- 7. Passive Buzzer
- 8. 12V 50Ah battery
- 9. Voltage Regulators
- 10. Subscriber Inline Module (SIM) Card


2.2 Procedure

Wireless Fire Alarm System is a device that senses smoke, typically as an indicator of fire. It should be reliable and in a timely way notify building occupants and also the nearest fire station about the presence of fire indicators, such as smoke or high temperatures. A fire detector is usually implemented as a smoke sensor due to its early fire detection capability, fast response time and relatively low cost. Wireless sensor network has become the most important technology in environmental monitoring and home or factory automation in recent years.

Automatic wireless fire alarm system provides real-time surveillance, monitoring and automatic alarm. It sends early alarm when the fire occurs and helps to reduce the fire damage. In order to provide early extinguishing of a fire disaster, large numbers of detectors which periodically measure smoke concentration or temperature are deployed in buildings. Those scattered detectors report their monitoring information to the surveillance centre via GSM network.

Wireless Fire Alarm Systems are ideal for fire alarm systems requiring a quick installation. It requires no cable installing between the master station/panel and devices. This also means that the decoration within the building does not need to be affected during the installation process. The block diagrams of the proposed system are as shown in Figs. 2 and 3.

The proposed system comprise of two basic units; the Fire sensing node and the Fire signal receiving node. This basic nodes are made up smaller subunits namely, Temperature sensor, Smoke sensor, CO sensor, RF communication module, GSM module and the Buzzer. These units are for basic activities; sensing the environmental conditions, communicates it to occupants and fire service centers, raise an alarm and give information about the inferno.

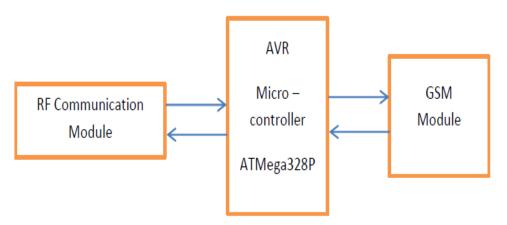


Figure 3: Fire signal receiving block

2.3 Result and Discussion

The proposed system will report the occurrence of fire inferno and provides the firefighting personnel with the distance to the site of the inferno to achieve prompt response time, thus putting out the fire and rescuing the victims.

3.0 Schedule of Activities

Tasks	WK										
	1	2	3	4	5	6	7	8	9	10	11
Circuit diagram design, components											
identification and sourcing.											
Procurement of materials											
Programming of 2 units of											
ATmega328P Micro-controllers.											
Construction of smoke, CO ₂ and											
temperature sensor unit.											
Construction of RF and GSM modules											
Construction of Fire sensing and Fire											
signal receiving nodes.											
Enclosure fabrication, assemblage,											
packaging and testing.											
Reporting and documentation of											

Research

4.0 Budget

Materials and Equipment

S/N	Item	Quantity	Unit Price	Cost	Stage when needed
			(N)		in Research
1.	ATmega328P	2	250,000	500,000.00	Implementation
					Stage
2. 433Mhz RF Tx		2	150,000	300,000.00	Implementation
	& Rx				Stage
	Communication				
	Module				
3.	MQ2 Smoke	1	120,000	120,000.00	Implementation
	Sensor				Stage
4.	MQ7 CO	1	120,000	120,000.00	Implementation
	Carbon				Stage
	monoxide				
	Sensor				
5.	DS1820		120,000	120,000.00	Implementation
	Temperature				Stage
	Sensor				
	900Mhz -	1	120,000	120,000.00	Implementation
	1800Mhz GSM				Stage
	Modem				
6.	Passive Buzzer	1	150,000	150,000.00	Implementation
					Stage
7.	12 V, 50 AH	1	300,000	300,000.00	Implementation
	battery (Litium)				Stage
8.	Mapping out of	Lot	400,000:00	400,000:00	Implementation
	the Polytechnic				Stage
	community				
Total				2,010,000:00	

Personnel

S/N	Name	Designation	Role in the	Duration of	Rate	Total
		and	Research	involvement	(N)	Honorarium
		Qualification	Process			(N)
1.	Aiyelabowo,	Lecturer I,	Head	Throughout	200,000	200,000.00
	O. P.	Ph. D M.	Researcher			
		Eng.				
3.	Timothy, M.	Lecturer I	Co-	Throughout	150,000	150,000.00
		B. Sc.,	researcher			
		M.Tech.				
4.	Adaramola,	Senior	Со-	Throughout	150,000	150,000.00
	O. J.	Lecturer, B.	researcher			
		Sc., M.Sc				
	500,000:00					

Others (Transport and Publication of Research)

S/N	Item	Description	Rate (N)	Total Cost (N)
1.	Alaba International Market,	Transportation	100,000	100,000:00
	Lagos			
2.	Report Preparation and	Typesetting,	100,000	100,000:00
	Binding	Printing and		
		Binding		
3.	Journal Publication	Publication	200,000	200,000:00
4	Consultation	Training	100,000	100,000:00
	Total		1	400,000:00

A grand total of **\(\mathbb{\mathbb{N}}2\), 910,000:00**, Two million, nine hundred and ten thousand naira only.

References

Goh, D., & Kwek, M. (2005). Overview of Fire Alarm Systems and Maintenance. Retrieved from http://www.scdf.gov.sg.

Iro, D. F. (2016, January 4). Fire guts Yola market, Retrieved form www.premiumtimesng.com

News Agency of Nigeria (2016, March 26). Midnight fire destroys Sabon-Gari market in

- Kano. The Guardian, Retrieved from guardian.ng.
- Nkem, I. (2016, February 28). Early morning fire guts popular Singa market in Kano (Photos). Naij.com, Retrieved form www.naij.com.
- Wale, O. (2016, March 3). Ex-Borno Auditor General dies as fire guts UNILAG VC's lodge (Photos). Daily Post, Retrieved form dailypost.ng.