Business Plan

For

Smart Solar-Powered Cold Storage Solutions for Nigeria

Presented By:

Dr. Ngozi Fidelia EFOZIA

(Principal Investigator)

16th September, 2025

1.0 Executive Summary

This business plan outlines the strategy for the development, local fabrication, and commercialization of smart solar-powered cold storage units to address Nigeria's critical post-harvest loss crisis, which costs the nation an estimated ₹3.5 trillion annually. Our solution is an affordable, modular, and sustainable cold storage system designed for off-grid and weak-grid rural communities where up to 40-50% of perishable crops are lost.

Our units leverage over 70% local materials, integrating solar power, innovative Phase Change Materials (PCM) for thermal storage, and Industry 4.0 technologies like IoT sensors for remote monitoring and predictive maintenance. This approach provides a technologically superior and economically viable alternative to expensive, environmentally harmful diesel-powered systems. A 5-year cost-of-ownership analysis shows our solar units save users over \$\frac{N}{2}\$.5 million (a 56% reduction) compared to diesel alternatives.

The target market includes Nigeria's 38 million smallholder farmers, agro-cooperatives, agri-SMEs, and urban food retailers. The project is technically feasible, leveraging the fabrication capabilities of PEDI/NASENI, and economically sound, with a projected unit cost of ₹5.8 million for a 12m³ unit and a pilot phase budget of ₹36,355,000 to deploy three units serving 2,000 - 5,000 farmers.

Our business model combines direct sales with an accessible Pay-Per-Use (PPU) or "Chilling-as-a-Service" (CaaS) model, proven effective in Nigeria. The long-term vision is to deploy 180 units over four years. This venture is poised for high impact, projected to reduce post-harvest losses by at least 40%, increase farmer incomes by 20-30%, create green jobs, and reduce carbon emissions by 50,000 - 70,000 tons annually by year five. This business plan seeks funding and partnerships to launch the pilot phase and scale this transformative solution across Nigeria.

2.0 Project and Company Description

This project will be spearheaded by the research and fabrication teams at the Engineering Materials Development Institute (PEDI), a subsidiary of the National Agency for Science and Engineering Infrastructure (NASENI).

- **Mission:** To establish a sustainable post-harvest management system in Nigeria by providing affordable, accessible, and smart solar-powered cold storage solutions that empower farmers, reduce food waste, and promote clean energy.
- **Vision:** To become Nigeria's leading provider of locally manufactured, sustainable cold chain infrastructure, transforming agricultural value chains and enhancing national food security.
- **Legal Status:** A commercialization venture under NASENI, aligning with its mandate to promote indigenous technology development, renewable energy, and local manufacturing.

3.0 Products and Services

We will design, fabricate, and deploy a range of smart solar-powered cold storage units with the following key features:

• **Modular Design:** Scalable units available in Small (2–3 MT), Medium (5 MT), and Large (10 MT) capacities to serve individual farmers, cooperatives, or large market hubs.

• Core Technology:

- Sustainable Power: 100% solar-powered using locally assembled PV panels and lithium-ion batteries.
- o Advanced Thermal Storage: Integration of Phase Change Materials (PCM) to extend cooling during non-solar hours, reducing battery dependency by 20-30%.
- Smart Features: IoT sensors for real-time monitoring of temperature and humidity, accessible via a cloud-based dashboard, with predictive analytics for maintenance alerts.

• Services:

- o *Direct Sales:* Outright sale of units to larger agribusinesses, cooperatives, and government agencies.
- o Chilling-as-a-Service (CaaS): A Pay-Per-Use (PPU) model where farmers pay a daily fee (e.g., №200–№400 per crate) to store produce, lowering the entry barrier.
- o *After-Sales Support:* A robust network for installation, commissioning, maintenance, and training for local technicians.

4.0 Market Analysis

4.1 Industry Overview

The Nigerian cold chain market is critically underdeveloped, leading to annual post-harvest losses of ₹3.5 trillion. The market has a potential value exceeding ₹160 billion annually if infrastructure gaps are filled. Globally, the solar-powered cold storage market is projected to reach US\$254 billion by 2027, indicating a strong growth trend.

4.2 Target Market

Our primary customers are spread across all six geopolitical zones and include:

- Smallholder Farmers & Cooperatives: The largest segment, requiring affordable, shared storage solutions.
- Agri-SMEs & Aggregators: Need reliable cold storage for supply chain logistics.
- Urban Food Markets & Retailers: Require larger cold hubs for bulk preservation.
- Fisheries and Aquaculture Sector: A key transferable market.
- Healthcare & Pharmaceuticals: A secondary market for vaccine and medicine storage.

4.3 Competitive Analysis

- Direct Competitors: Established diesel-powered cold rooms. Their high initial cost (N6m N12m) and exorbitant running costs (N1.5m-N3m annually) make them unsustainable for our target market.
- Indirect Competitors: Emerging solar providers like Cold Hubs and Kool Boks.
- Our Competitive Advantage:
 - o Cost-Effectiveness: Over 70% local content reduces production costs and ensures spare part availability.
 - o Technological Superiority: Integrated IoT and PCM technology offer efficiency gains and remote management capabilities not widely available.
 - Accessibility: The dual model of direct sales and CaaS makes our solution accessible to all market segments.

5.0 Marketing and Sales Strategy

Our marketing strategy will be multi-pronged to ensure deep market penetration and build trust:

- 1. Partnership-Led Growth: Collaborate with agro-cooperatives, farmer associations, and aggregators for bulk adoption and shared ownership models.
- 2. Flexible Financial Models: Partner with the Bank of Agriculture, Bank of Industry, and microfinance institutions to offer accessible financing, leasing, and our PPU/CaaS model to overcome the high upfront cost.
- 3. Demonstration and Awareness: Deploy pilot units in farming clusters to showcase benefits. Use agricultural extension services and testimonials to build trust and educate users.
- 4. Government and NGO Channels: Engage with government bodies (for constituency projects) and NGOs (for empowerment schemes) to accelerate deployment and reach remote communities.
- 5. Digital Presence: Utilize the cloud-based dashboard not only for monitoring but as a marketing tool to demonstrate transparency and reliability to potential large-scale buyers.

6.0 Organization and Management

- Lead Organization: The project will be incubated within PEDI/NASENI, leveraging its existing infrastructure and technical expertise.
- Principal Investigator: Dr. Ngozi Fidelia Efozia will lead the project, overseeing R&D, pilot deployment, and commercialization.
- Key Personnel: The team comprises PEDI's experienced mechanical, electrical, and ICT engineers, fabrication technicians, and project managers.
- Collaborations: Strategic partnerships will be formed with local fabricators, solar technology providers (like NASENI Solar Energy Ltd.), financial institutions, and research partners to ensure a robust ecosystem for production and deployment.

7.0 Financial Plan

7.1 Start-up Costs (Pilot Phase)

The total budget for the pilot phase, which includes R&D, fabrication of three units, and deployment, is \$36,355,000. The breakdown is as follows:

S/N	Category	Total Cost (₦)
1	R&D and Prototyping	5,000,000
2	Fabrication & Materials	16,800,000
3	Digital Integration	4,250,000
4	Deployment, Training & Pilot Operations	7,000,000
5	Contingency & Overheads (10%)	3,305,000
	Total Pilot Budget	₩36,355,000

7.2 Pricing and Revenue Projections

- Direct Sales Price: №5.8 million for a standard 12m³ unit.
- Pay-Per-Use (PPU) Rate: №200–№400 per crate per day.
- Long-Term Funding: The scale-up plan to deploy 180 units over four years will require approximately №1.044 billion, sourced through grants, partnerships, and revenue from initial sales.
- Payback Period: Due to significant operational savings, the units offer an attractive payback period of 3–4 years for buyers.

7.3 SWOT Analysis

- Strengths: Innovative, sustainable technology with >70% local content; scalable modular design; strong alignment with national priorities.
- Weaknesses: High upfront cost compared to traditional methods; requires trained technicians for maintenance.
- Opportunities: Huge untapped rural market; strong government support for food security and renewables; potential for climate finance.
- Threats: Competition from entrenched diesel systems; logistical challenges in rural areas; potential end-user affordability issues.

8.0 Conclusion

This business plan demonstrates a clear and viable path to commercializing smart solar-powered cold storage in Nigeria. By combining local manufacturing with advanced technology, we can offer a solution that is not only profitable but also socially and environmentally transformative. We are seeking \mathbb{N36,355,000} in initial funding to execute the pilot phase and validate our model, paving the way for a large-scale rollout that will significantly reduce post-harvest losses, boost farmer incomes, and strengthen Nigeria's food security.