# Federal Polytechnic Ilaro Smart Farm Initiative

ENHANCING AGRIBUSINESS WITH SMART HYDROPONIC:
A TECHNOLOGICAL APPROACH TO TOMATO &
VEGETABLE FARMING



# Dr. OLUWAGBAYIDE Samuel Dare

Project Coordinator samuel.oluwagbayide@federalpolyillaro.edu.ng +234 703 736 0435



### A TECHNOLOGICAL APPROACH TO TOMATO AND VEGETABLE FARMING

**Prepared by:** Smart Hydroponics Group, FPI Date: October 2025

# PROJECT TEAM

| Name                   | Role            | Expertise                       |
|------------------------|-----------------|---------------------------------|
| ENGR. DR. S. D.        | Principal       | Machine Design & Fabrication    |
| OLUWAGBAYIDE           | Investigator    |                                 |
| ENGR. M. A. OKUSANYA   | Co-Investigator | Renewable Energy & Automation   |
| ENGR. C.B. OGUNLADE    | Technical       | Waste Recycling & Environmental |
|                        | Coordinator     | Engineering                     |
| ENGR. F.E. AGBONGIABAN | Fabrication     | Welding & Machining             |
|                        | Engineer        |                                 |

This business pitch outlines a sustainable, technology-driven hydroponic farming model designed to increase productivity, reduce resource use, and empower local Agri-preneurs.

#### **EXECUTIVE SUMMARY**

This project establishes a smart hydroponic farm for tomatoes and vegetables using IoT-based environmental and nutrient monitoring. It ensures sustainable, year-round production with minimal water use while creating jobs and empowering youth. The venture expects breakeven within 12–18 months and ROI of 25 - 40% per annum.

#### **OBJECTIVES**

- 1. Build and operate a smart hydroponic farm for tomatoes and greens.
- 2. Achieve high yields and quality with reduced resources.
- 3. Train youth and agri-preneurs in modern hydroponics.
- 4. Supply market-demanded produce, reducing imports.
- 5. Attain financial sustainability within 2 years.

#### PROBLEM & SOLUTION

Conventional farming faces water scarcity, climate instability, and soil degradation. Smart hydroponics offers a controlled-environment solution using automated pH/EC control, climate monitoring, and 90% less water use, ensuring consistent quality yields.

#### MARKET & ADVANTAGE

Target markets include urban consumers, hotels, supermarkets, and exporters. Advantages include precision farming via IoT, sustainability, consistent quality, and skill development.

#### FINANCIAL HIGHLIGHTS

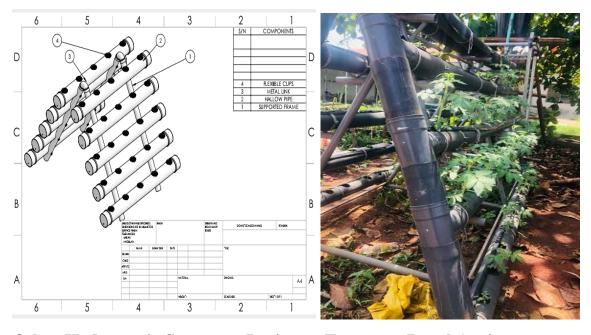
Estimated startup cost: \$50,000,000 Revenue from produce, training, and consultancy. Breakeven: 12 - 18 months | ROI: 25-40% per annum | Gross margin: 50-60%.

#### **IMPACT & SUSTAINABILITY**

- Environmental: 90% less water, zero soil use.
- Economic: Job creation, import substitution. Social: Youth empowerment, innovation in agribusiness.

#### **TIMELINE**

- Phase 1: Feasibility & design (Months 1–3)
- Phase 2: Construction & setup (Months 4–6)
- Phase 3: Pilot cycle (Months 7–9)
- Phase 4: Training & scaling (Months 10–12)
- Phase 5: Expansion & export (Year 2+)


Contact Information: Prepared by: Dr. OLUWAGBAYIDE Samuel Dare Email: samuel.oluwagbayide@federalpolyilaro.edu.ng Phone: +2347037360435

**Funding Request: №50 Million** 

## **APPENDIX**



Interior of a smart hydroponic system showing tomato and lettuce crops, drip lines, and IoT sensors.



Other Hydroponic Structure Design to Empower Local Agri-preneurs.