Project Overview

This project aims to optimize natural dye extraction protocols, enhance dye performance through value addition, design and fabricate a pilot-scale extraction machine for technology transfer. The innovation bridges the gap between laboratory-scale research and industrial application, supporting eco-friendly dye production, SME competitiveness, and sustainable development.

Technical Feasibility

Conventional dye extraction techniques achieve yields of 5–30%, with poor reproducibility and limited scalability. The proposed pilot machine is designed for a throughput capacity of 30–40 kg/day, achieving extraction efficiencies of 25–60%. Fabrication will use durable and cost-effective materials (mild steel and stainless steel), with CAD-based design ensuring functionality and safety. The project advances from TRL 4 to TRL 6, validating performance under pilot-scale conditions.

Economic Feasibility

The global natural dye market is growing due to eco-conscious consumer demand. The project budget is estimated at $\Re 60,000,000$ over 18 months. Commercialization opportunities include:

- Sales of fabricated machines to SMEs.
- Supply of eco-friendly dyes to textile, cosmetic, and food industries.
- Technology licensing and training services.

∜ Viable, with strong revenue potential for SMEs and reduced dependence on imported synthetic dyes.

Environmental Feasibility

Synthetic dyes contribute 17–20% of global industrial water pollution. Plant-based dyes offer biodegradable, non-toxic alternatives. The pilot machine integrates solvent recovery and energy efficiency, reducing environmental footprints and supporting SDGs 9, 12, and 13.

 \checkmark Environmentally sustainable, aligned with green innovation policies.

Social Feasibility

The project strengthens green value chains by:

- Creating new income opportunities for farmers cultivating dye plants.
- Preserving indigenous knowledge and practices.
- Supporting SMEs in eco-friendly textile and craft production.

extstyle ext

6. Risks and Mitigation

- Biomass supply variability → Structured farmer cooperatives.
- High initial machine cost → Modular, scalable design.
- Market adoption \rightarrow Awareness workshops and stakeholder engagement.

 \forall Risks are manageable with defined strategies.

Conclusion

This project is technically sound, economically viable, environmentally sustainable, and socially beneficial. By developing optimized protocols and a functional pilot-scale machine, it enables technology transfer, SME empowerment, and sustainable dye production.